

Julien FIZET, Business Development Fabien GINDRAT, Head of Robotics Dpt

RAYA 2023 Finalist Event

Current situation and needs

On users' side \checkmark

24 / 7 running complicated to set up in laboratories Need to speed up development (alternative fuels / drugs / food / ...) Laboratory technicians or scientists are not robotics specialists

On JAG's side \checkmark

Specialist in process automation

Robotic specialist (industrial, collaborative, mobile robots)

→ JAG vision for the future

- Combine process automation and robotics to automate production & laboratory control tasks \checkmark
- Simplify equipment control to facilitate access to technology \checkmark
- Use artificial intelligence (AI/ML) to support R&D \checkmark

Introduction to Application

✓ A compact, versatile and automated dosing station for <u>liquids</u> and <u>powders</u>

Introduction to Application

*** Video ***

Introduction to Application

- ✓ Standard setup : design for producing and testing simple products
- From 0.1mL to 500mL (liquids) and from 0.1g to 100g (powders) dispensing
- Up to x15 raw materials (in 400mL bottles)
- 6 axes collaborative robotic arm with 5kg payload (FANUC)
- Precision scale (Mettler Toledo)
- Stirring device (IKA)
- Measuring probes for pH, redox potential, conductivity, temperature (Mettler Toledo)
- JAG MES interface allowing recipes from : manual input, ERP, LIMS, ...

Introduction to Application

- ✓ Advanced setup : design for advanced R&D and production
- Accuracy down to <u>1uL (liquids)</u> and <u>10mg (powders)</u>
- <u>Unlimited number of raw materials</u> : with conveyor or Mobile Manipulator service
- Additional measuring probes (depending on application)
- Additional devices and operations : shaking, heating, cooling, filtering, quality control, cleaning, packing, larger cobot range, dedicated grippers, ...
- JAG MES interface with Atinary SDLabs allowing AI/ML computed recipes

➔ Introduction to Application

✓ Articles management :

"No need for JAG to define components"

Articles 🕀	× ₽, Exp	orter en csv	팀 🗣 Importer 🗣 Exporter	
Number	↑ Version	Nom	Recette	Catégorie
1	001	Salt		Powder component
1	060	Article 5 (WW)		Liquid component
1	061	H2O (Demineralized water)		Liquid component
1	062	NaCl (Saline solution)		Liquid component
1	063	NaHCO3 (Bicarbonate solution)		Liquid component
1	064	H2O (For saline solution)		Liquid component
10	001	100uL		Syringes
11	001	200uL		Syringes
12	001	500uL		Syringes
13	001	1mL		Syringes
14	001	2.5mL		Syringes
15	001	5mL		Syringes
16	001	10mL		Syringes
17	001	50mL		Syringes
30	001	25mL		Beakers
31	001	100mL		Beakers
32	001	250mL		Beakers
64	001	CH3COOH (Acid solution)		Liquid component
70	001	Parfum-33-17	000011 - Mixture-20-30-50	End product
71	001	Parfum-24-21	000012 - Mixture-5-5-10-80	End product

Introduction to Application

Articles parameters : \checkmark

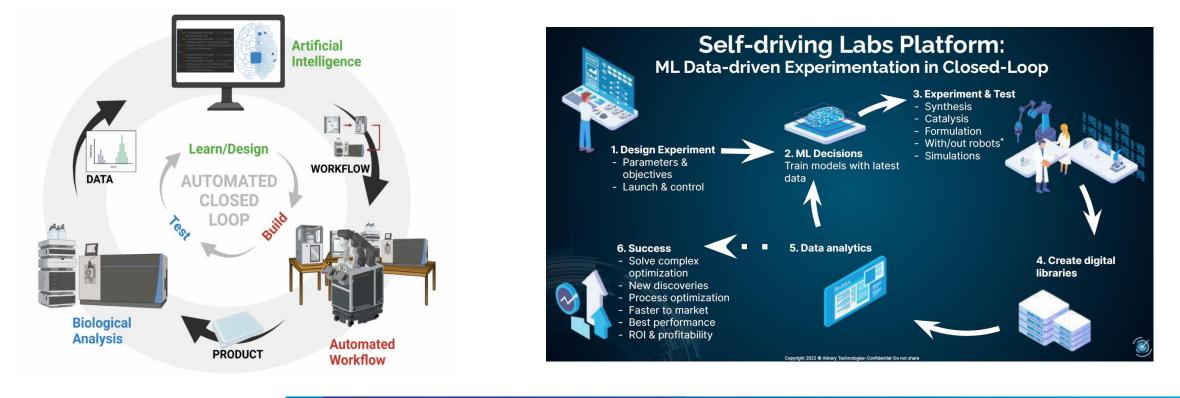
" No need for JAG to define parameters"

Paramètres 🖹 Enregistrer									
Nom 1	Valeur	Unité	min	max					
12 External diameter	52	mm	0	80					
12 Height	155	mm	0	200					
🔢 Sampling depth	30	mm	0	150					
12 Capacity	250	ml	0	250					
🔢 Cap diameter	30	mm	0	150					
12 Volumic mass	0.997	g/cm3	0	10					
Price per liter	0.1	CHF	0						
Dispensing max value	30	mL	0						

Mix (3) Introduction to Application Grinding (1) Text MMI Salt - 1.001 Powder component 5 12 Set point Mixing products (2) **Recipes management :** \checkmark 🕆 Text MMI 10 s Duration 1000 RPM 12 Speed of rotation Quality control (4) "Independence in PH control (1) 🕆 Text MMI recipe creation" Target Goal 7 Set point value 5.9 Tolerance min Automatic dosing open loop (4) 6.1 Tolerance max 🏦 Text MMI 20 s 12 Stabilization time Component Article 5 (WW) - 1.060 Conductivity control (2) 12 Set point 10 🕆 Text MMI Automatic dosing open loop (5) Goal Max 🏦 Text MMI 0.2 Set point value NaHCO3 (Bicarbonate solution) - 1.063 Component 0.1 17 Tolerance max 12 Set point 10 0.5 Tolerance min Cleaning (2) 20 s 12 Stabilization time Flushing (1) Redox control (3) 🕆 Text MMI 🕆 Text MMI B Max Goal

➔ Introduction to Application

✓ Test results on HMI :


Dosing details				Dosing details						
	Actual Iteration : 4 Displayed Iteration : 3		• •				Actual Iteration : 4 Displayed Iteration : 4		• •	
Step	Action	Name	Value	Unit	S	Step	Action	Name	Value	Unit
1	Price	Price	0.09	CHF		3	Automatic dosing open loop	NaHCO3 (Bicarbonate solution)	3.00	mL
2	Redox Control	Redox	-0.05	mV		4	Automatic dosing open loop	Article 5 (WW)	17.00	mL
3	Conductivity Control	Conductivity	53.67	mS * cm-1		5	Automatic dosing open loop	H2O (For saline solution)	30.00	mL
4	Ph Control	PH	8.07	РН		6	Automatic dosing open loop	H2O (Demineralized water)	2.00	mL
5	Mixing product		0.00			7	Automatic dosing open loop	CH3COOH (Acid solution)	13.00	mL

➔ Introduction to Application

✓ UP & DOWN link with Atinary SDLabs (AI/ML formulation – closed loop laboratory – self driving lab):

Introduction to Application

- 1) The scientist initiates a basic production recipe with a list of components (raw materials)
- 2) The scientist defines the targets to be reached (ex. reduce the quantity of a certain costly raw material, produce faster, reach a higher pH or conductivity, etc.)
- 3) The dosing bench automatically produces recipes, runs tests and processes results using Artificial Intelligence.
- 4) Running in "closed loop", the system analyzes tendencies and reformulates recipes until the desired result is reached.
- 5) The scientist becomes a supervisor. He can stop or influence the experiment at any time.

→ Introduction to Application

Ś	Q Search on Atinary E	Interprise			JAG	• 0		
A T I N A R Y	REPORT DETAILS							
	Name	Creation date Sep 22, 2023, 1:15:22 PM	Template	Description				
n Dashboard	imac	Sep 22, 2025, 1.15.22 PM	ß	-				
℃ Workstations	ADD NEW CHART	EXPORT ALL CHARTS						
Templates						Dosing-Grinding_run_6		
🗘 Campaigns	Article 5 (WW) 30	CH3COOH (Acid solution) H2O (Demineralized water) 30 30	H2O (For saline solution) 30	30	Salt Conductivity 5 97.89		Price 0.3311	Redox control 0.015375
Data	30	25 - 25 -	25-	25 -	5 90- 4 80-	8.4 8.2	0.3 -	0,01 -
Analytics	20 -	20 - 20 -	20-	20	Z0 -		0.25	-0.01 -
Cocumentation	15 -	15 15-	15-	15	3 600	7.6		-0.02 -
5 SDK	10	10-10-	10-	10-	40	7.4	0,13	-0.04
🛃 Atinary	5-	5	5	2-	1-20-	2	0.1	-0.05
🗹 Home	0.0	L0 L0	0	0	0 7.39	6.8445	0.045	-0.072375

→ Attractivity

- ✓ Accurate and repeatable dosing capacities for liquids and powders
- ✓ Full operational traceability (electronic records for dosages, results, batches, events, alarms, ...)
- ✓ <u>24/7 operation</u> for buffers / samples / submixes preparation and testing
- ✓ Reduction of repetitive / low added value tasks for operators, more comfort
- ✓ Improved throughput (production and testing capacities) for laboratories
- ✓ <u>Reduction of handling / testing errors, improved general Process Quality</u>
- ✓ Simple control by the operators or by any upper system (ERP, LIMS, ...)
- ✓ Connects with AI/ML for cloud-computed formulation (self driving lab)

Cost Effectiveness – Explanation of ROI

- ✓ In case of a laboratory operating 24/7 : ROI achieved in less than 1 year
- In case of a laboratory operating 8 hours a day : ROI achieved in 2 to 3 years
- ✓ When served with a Mobile Manipulator : one bench can supply different production lines or laboratories : higher use and better ROI
- ✓ Flexibility of design and use : ensures easy reconfiguration for new tasks : maximization of use over time
- ✓ In case of targeting the discovery of new materials : <u>use of artificial intelligence / machine learning with "closed loop" method</u> offers results <u>x5 to x20 times faster than traditional methods (iteration or experimental design)</u>

➔ Areas of application

✓ R&D

Formulation discovery (with or without AI/ML) Process optimization (with or without AI/ML)

✓ Quality Control

Automated samples preparation Automated lot control from a production line, intermediate processes, storages, suppliers, ...

✓ Manufacturing

Recipe-driven buffers preparation Automated submixes / small batches formulation

→ Flexibility

Standard implemented PLC and JAG MES ensures the system is highly flexible for :

- ✓ Implementing new operating recipes (ex. dosing, diluting, testing, ...)
- ✓ Implementing new labware formats (ex. bottles, beakers, syringes, ...)
- ✓ Introducing new testing probes or any third-party equipment

Intrinsic flexibility of the 6 axes robotic arm allows additional manipulation :

- ✓ Shaking, filtering, cleaning, packing, heating, cooling, controlling, storing, ...
- ✓ Either by the robotic arm itself or in collaboration with third-party equipment

Stainless steel construction for easy cleaning

➔ Easyness to integrate

- ✓ JAG MES <u>connects with third party softwares</u> implemented in laboratories (ERP, LIMS, …)
- ✓ JAG MES <u>connects with APIs</u> for driving laboratories' equipments
- ✓ Operators can create their own new articles and recipes with no programming experience
- The system can be "Plug and Play" applied into a laboratory for samples / buffers preparation or submixes reworking
- Any technical customization can be studied and performed by JAG if the case of a change of use / process in the laboratory

➔ Final message

- ✓ An obvious and simple answer to common difficulties in <u>laboratories</u>
- ✓ A cost-effective and scalable solution for <u>companies</u>
- ✓ A tool designed to help and serve <u>operators</u>
- ✓ A powerful hub offered by an experimented robotic integrator

